TABLE OF CONTENTS

PREFACE

- 0.1 About the Textbook
- 0.2 How to Study with the Text
- 0.3 How to Study Organic Chemistry

CHAPTER 1. INTRODUCTION TO ORGANIC CHEMISTRY AND DRAWING MOLECULES

- 1.1 WHAT IS ORGANIC CHEMISTRY?
- 1.2 BOND-LINE STRUCTURES: ELECTRONS, BONDS, AND FORMAL CHARGES
 - 1.2.1 Formal Charge
- 1.3 DEGREES OF UNSATURATION (DU)
 - 1.3.1 Using DU for Molecules with Other Atoms
- 1.4 RESONANCE AND ELECTRON PUSHING
 - 1.4.1 Moving Electrons without Violating Rules
 - 1.4.2 Estimating the Relative Importance of Contributing Resonance Structures
- 1.5 X-RAY CRYSTALLOGRAPHY: FINDING POSITIONS OF ATOMS
 - 1.5.1 Why X-Rays?
 - 1.5.2 The Spatially Periodic Crystalline State
 - 1.5.3 How It's Done

CHAPTER 2. MOLECULAR STRUCTURE - THE σ BOND

- 2.1 ATOMIC ORBITALS (AOs)
- 2.2 MOLECULAR ORBITALS (MOs)
 - 2.2.1 H Atoms to Diatomic H₂
 - 2.2.2 AOs and MOs Define Atomic and Molecular Size
 - 2.2.3 MO Energy Diagrams
 - 2.2.4 Minimalist Summary of Bond Formation
- 2.3 HYBRIDIZATION OF AOs TO DETERMINE MOLECULAR SHAPE
 - 2.3.1 Note to the Reader Regarding Sections 2.3, 2.6-2.8
 - 2.3.2 Methane: The Simplest Stable Hydrocarbon
 - 2.3.3 Hybridized Carbon AO Model for CH₄
 - 2.3.4 Shape of Hybrid Carbon Carbon sp³ AOs

- 2.3.5 Directionality of Hybrid MOs
- 2.3.6 Hybrid Carbon AOs + Hydrogen AOs --> CH₄ MOs
- 2.3.7 Group sp³ Orbitals
- 2.4 PES: Evidence for CH₄ MOs
- 2.5 CH₄ ON THE MOVE
- 2.6 STRUCTURE OF THE METHYL ANION
 - 2.6.1 MO Energy Diagram of the Methyl Anion
 - 2.6.2 MOs of the Methyl Anion
- 2.7 STRUCTURE OF THE METHYL CATION
 - 2.7.1 Directionality of Hybrid Carbon sp² AOs
- 2.8 STRUCTURE OF THE METHYL RADICAL
 - 2.8.1 The Improper Dihedral Angle

CHAPTER 3. MOLECULAR STRUCTURE – UNDERSTANDING σ and π BONDING

- 3.1 ATOMIC ORBITALS (AOs)
 - 3.1.1 The Bond in Ethane Rotates
 - 3.1.2 Molecules with Rotatable Bonds Related to Ethane
 - 3.1.3 Naming Alkanes
- 3.2 STRUCTURE OF ETHYLENE: THE NON-ROTATABLE Π BOND
 - 3.2.1 Molecules with Π Bonds Related to Ethylene
 - 3.2.2 Namine Alkenes
- 3.3 PARALLEL MO INTERACTIONS IN GENERAL
 - 3.3.1 Resonance Structures Involving Double Bonds
- 3.4 STRUCTURE OF ACETYLENE
 - 3.4.1 MOs of Acetylene
 - 3.4.2 Molecules with Π Bonds Related to Acetylene
- 3.5 CHEMISTRY AND BONDS
- 3.6 THE ALLYLIC ORBITAL SYSTEM
 - 3.6.1 The Allyl Cation
 - 3.6.2 The Allyl Anion
 - 3.6.3 The Allyl Radical

0 0 4 4 11 11				
3.6.4 Allylic	MOs in	Many (Drganic	Molecules

3.7 BUTADIENE AND CONJUGATED Π BONDS

- 3.7.1 Shortcut to Building Conjugated Π MOs
- 3.8 LOCAL NATURE OF σ AND THE GLOBAL NATURE OF Π
 - 3.8.1 Saturation Truncates Conjugated Systems
- 3.9 BOND AND ORBITAL HYBRIDIZATION UPON INSPECTION
- 3.10 INDUCTION, POLAR COVALENT BONDS, AND ELECTRONEGATIVITY
 - 3.10.1 Dipole Moments and Molecular Polarity
 - 3.10.2 The Magnitude of the Debye Unit
- 3.11 INTERMOLECULAR FORCES AND PHYSICAL PROPERTIES
 - 3.11.1 Dispersion Forces
 - 3.11.2 Dipole-Dipole Interactions
 - 3.11.3 Hydrogen Bonding Interactions
- 3.12 UV-VIS SPECTROSCOPY A MINIMAL INTRODUCTION
- 3.13 ANALYTICAL UV-VISIBLE SPECTRA AND MO CONJUGATION
 - 3.13.1 The Electronic Transition
 - 3.13.2 Protecting Yourself from Sunburn
 - 3.13.3 Looking at UV-vis Spectra
 - 3.13.4 Organic and Biological Analytical UV Spectroscopy

CHAPTER 4. ISOMERS

- 4.1 INTRODUCTION: SOURCES AND USES OF ALKANES
- **4.2 NOMENCLATURE**
 - 4.2.1 Naming Functional Groups
 - 4.2.2 IUPAC Nomenclature
 - 4.2.3 Molecules with Substituents Other than Carbon
 - 4.2.4 Cyclic Molecules
 - 4.2.5 Bicyclic Molecules
- 4.3 INFRARED SPECTROSCOPY
 - 4.3.1 IR Spectra: Absorption Intensity
 - 4.3.2 IR Spectra: Absorption Frequency

- 4.3.3 IR Spectra: Bond Strength
- 4.3.4 IR Spectra: Atomic Mass
- 4.3.5 IR Spectra: Absorption Band Width
- 4.3.6 IR Spectra: Coupled Frequencies
- 4.3.7 IR Spectra: Functional Group Identification

4.4 ISOMERS

- 4.4.1 Stereoisomers / Enantiomers
- 4.4.2 Meso Compounds: Those that Posses an Internal Mirror of Symmetry
- 4.5 CHIRALITY AND NATURAL PRODUCTS
 - 4.5.1 R/S Configuration
- 4.6 CHIRAL COMPOUNDS THAT LACK A CHIRAL CENTER
- 4.7 OPTICAL ACTIVITY
 - 4.7.1 Optical Purity
- 4.8 MULTIPLE CHIRAL ELEMENTS / DIASTEREOMERS
- 4.9 RESOLUTION OF ENANTIOMERS
 - 4.9.1 Asymmetric Crystallization
 - 4.9.2 Derivatization
 - 4.9.3 Chromatography
 - 4.9.4 Enzymatic Resolution
- 4.10 REVIEW OF STEREOISOMERS

CHAPTER 5. CHEMICAL REACTIVITY AND MECHANISMS

- 5.1 INTRODUCTION TO CHEMICAL THERMODYNAMICS
- 5.2 REACTION ENTHALPY (ΔH_{rxn})
- 5.3 REACTION ENTROPY
 - 5.3.1 Entropy in Calorimetry
 - 5.3.2 Changes in Chemical Entropy (ΔSrxn)
 - 5.3.3 Universal Aspect of Entropy
- 5.4 GIBBS FREE ENERGY (ΔG_{rxn}) FOR CHEMICAL EQUILIBRIA
 - 5.4.1 ΔG_{rxn} *is* a Difference in Entropy
 - 5.4.2 Thermodynamic Parameters for Spontaneous Chemistry

	5.4.3	3 Usina	ΔΗ	of	Chemical	Bond
--	-------	---------	----	----	----------	------

5.5 EQUILIBRIA

 $5.5.1 \Delta G_{rxn} = -RTLn Keq$

5.6 KINETICS

- 5.6.1 ΔG[‡] is Not a State Function!
- 5.6.2 Molecular Features that Affect Reaction Rates

5.7 INTRODUCING ENERGY DIAGRAMS

5.7.1 Kinetic vs. Thermodynamic Products

5.8 READING ENERGY DIAGRAMS

- 5.9 CATALYSIS
- 5.10 USING pKa TO PREDICT HETEROLYTIC BOND FORMTAION
 - 5.10.1 pKa is an Energy Unit
- 5.11 NUCLEOPHILES AND ELECTROPHILES
- 5.12 MECHANISMS AND ARROW PUSHING
- 5.13 ARROW PUSHING IN SPECIFIC REACTIONS
 - 5.13.1 Heterolytic Bond Cleavage
 - 5.13.2 Homolytic Bond Cleavage
 - 5.13.3 Using Arrow Pushing in Mechanisms

CHAPTER 6. MOLECULAR CONFORMATION

- 6.1 INTRODUCTION TO MOLECULAR DYNAMICS
- 6.2 CONFORMATIONS OF OPEN-CHAIN NEWMAN PROJECTIONS
- 6.3 CONFORMATION IN CYCLIC MOLECULES
 - 6.3.1 Conformation in Cyclohexanes
 - 6.3.2 Drawing Cyclohexane Conformers
 - 6.3.3 Axial / Equatorial vs. Cis / Trans
 - 6.3.4 Chair Conformations
- 6.4 CYCLOHEXANE CONFORMATIONAL ENERGY
 - 6.4.1 Relative Energies of Substituted Cyclohexanes
- 6.5 CHAIR CONFORMATIONS IN CYCLIC CARBOHYDRATES
- 6.6 CHAIR CONFORMATIONS IN SATURATED POLYCYCLIC STRUCTURES

6.7 NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

- 6.7.1 Chemical Shifts in NMR
- 6.7.2 Chemical Shifts and Residual 1H in NMR Solvents
- 6.7.3 NMR Time Scale
- 6.7.4 NMR and Molecular Symmetry
- 6.7.5 NMR Integration and the Beer-Lambert Law
- 6.7.6 J-Coupling in NMR
- 6.7.7 Stepwise Analysis of First Order ¹H NMR Coupling
- 6.7.8 Protic 1H NMR Chemical Shifts and Dynamic States
- 6.7.9 The NMR Time Scale
- 6.7.10 A Few More Notes about NMR Spectroscopy
- 6.8 13C NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY
 - 6.8.1 Chemical Shifts in ¹³C NMR

CHAPTER 7. ONE-ELECTRON TRANSFER: RADICAL REACTIONS

- 7.1 INTRODUCTION TO RADICALS
 - 7.1.1 Radical Mechanisms
- 7.2 RADICAL STABILITY
- 7.3 CHLORINATION OF ETHANE
- 7.4 THERMODYNAMICS OF HALOGENATION
- 7.5 SELECTIVITY OF HALOGENATION
 - 7.5.1 Hammond's Postulate
 - 7.5.2 Hammond's Postulate in Selectivity of Halogenation
- 7.6 STEREOCHEMISTRY OF HALOGENATION
- 7.7 ALLYLIC / BENZYLIC BROMINATION
- 7.8 ATMOSPHERIC CHEMISTY AND THE OZONE LAYER
- 7.9 THE ORGANIC OXIDATION STATE
 - 7.9.1 Addition of Water or HX is Neither Oxidation Nor Reduction
- 7.10 AUTOOXIDATION
- 7.11 RADICAL ADDITION OF HBr
 - 7.11.1 Mechanism of Radical Addition to a C-C Pi Bond

7.11.2 Reaction Conditions for Radical Addition of HBr

7.12 DISSOLVING METAL REDUCTION OF ALKYNES

7.13 BIRCH REDUCTION

7.14 RADICAL POLYMERIZATION

- 7.14.1 Overview of a Radical Chain-Growth Polymerization Reaction
- 7.14.2 Initiation
- 7.14.3 Propagation
- 7.14.4 Termination
- 7.14.5 Kinetics

CHAPTER 8. ACIDS AND BASES

- 8.1 INTRODUCTION TO ACIDS AND BASES
- 8.2 BRØNSTED-LOWRY ACIDS AND BASES
 - 8.2.1 Lewis Acids and Bases
 - 8.2.2 Curved Arrow Notation
- 8.3 ACIDITY
 - 8.3.1 Qualitative Perspective
 - 8.3.2 Quantitative Perspective
- 8.4 POSITION OF EQUILIBRIUM
- 8.5 BIOLOGICAL RELEVANCE

CHAPTER 9. SUBSTITUTION AND ELIMINATION REACTIONS

- 9.1 INTRODUCTION
- 9.2 KINETICS AND MECHANISMS
- 9.3 SUBSTITUTION REACTION MECHANISMS
 - 9.3.1 Bimolecular Substitution Reactions: S_N2
 - 9.3.2 Unimolecular Substitution Reactions: S_N2
- 9.4 NUCLEOPHILES
 - 9.4.1 What is a Nucleophile?
 - 9.4.2 Protonation State
 - 9.4.3 Periodic Trends in Nucleophilicity

- 9.4.4 Resonance Effects on Nucleophilicity
- 9.4.5 Steric Effects on Nucleophilicity

9.5 ELECTROPHILES AND CARBOCATION STABILITY

- 9.5.1 Steric Hindrance at the Electrophile
- 9.5.2 Carbocation Stability
- 9.6 LEAVING GROUPS
- 9.7 REGIOCHEMISTRY OF S_N1 REACTIONS WITH ALLYLIC ELECTROPHILES
- 9.8 S_N1 or S_N2? PREDICTING THE MECHANISM
- 9.9 BIOLOGICAL NUCLEOPHILIC SUBSTITUTION REACTIONS
 - 9.9.1 A Biochemical S_N2 Reaction
 - 9.9.2 A Biochemical S_N1 Reaction
 - 9.9.2 A Biochemical S_N1/2 Hybrid Reaction
- 9.10 NUCLEOPHILIC SUBSTITUTION IN THE ORGANIC SYNTHESIS LABORATORY
 - 9.10.1 Wiliamson Ether Synthesis
 - 9.10.2 Turning a Poor Leaving into a Good One: Tosylates
- 9.11 SUMMARY

CHAPTER 10. ELIMINATION REACTIONS

- 10.1 INTRODUCTION
- 10.2 UNIMOLECULAR ELIMINATION REACTION MECHANISM: E1
 - 10.2.1 Overview of the E1 Mechanism
 - 10.2.2 Regiochemistry of E1 Elimination
 - 10.2.3 Stereochemistry of E1 Elimination
- 10.4 BIMOLECULAR ELIMINATION REACTION MECHANISM: E2
 - 10.4.1 Overview of the E2 Mechanism
 - 10.4.2 Regiochemistry of E2 Elimination
 - 10.4.3 Stereochemistry of E2 Elimination
- 10.5 COMPETITION BETWEEN ELIMINATION AND SUBSTITUTION REACTIONS
- 10.6 BIOCHEMICAL E1 ELIMINATION REACTIONS
- 10.7 SUMMARY

CHE 230 UKY, 2019 EDITION